Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Sci Rep ; 14(1): 6264, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491088

RESUMEN

Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.


Asunto(s)
Fabaceae , Rhizobium leguminosarum , Rhizobium , Trifolium , Rhizobium leguminosarum/genética , Simbiosis/genética , Fabaceae/genética , Trifolium/genética , Fijación del Nitrógeno , Filogenia , Rhizobium/genética , ADN Bacteriano/genética
2.
Sci Rep ; 14(1): 2698, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302681

RESUMEN

A novel bacterium, designated strain MMK2T, was isolated from a surface-sterilised root nodule of a Trifolium rubens plant growing in south-eastern Poland. Cells were Gram negative, non-spore forming and rod shaped. The strain had the highest 16S rRNA gene sequence similarity with P. endophytica (99.4%), P. leporis (99.4%) P. rwandensis (98.8%) and P. rodasii (98.45%). Phylogenomic analysis clearly showed that strain MMK2T and an additional strain, MMK3, should reside in the genus Pantoea and that they were most closely related to P. endophytica and P. leporis. Genome comparisons showed that the novel strain shared 82.96-93.50% average nucleotide identity and 26.2-53. 2% digital DNA:DNA hybridization with closely related species. Both strains produced siderophores and were able to solubilise phosphates. The MMK2T strain was also able to produce indole-3-acetic acid. The tested strains differed in their antimicrobial activity, but both were able to inhibit the growth of Sclerotinia sclerotiorum 10Ss01. Based on the results of the phenotypic, phylogenomic, genomic and chemotaxonomic analyses, strains MMK2T and MMK3 belong to a novel species in the genus Pantoea for which the name Pantoea trifolii sp. nov. is proposed with the type strain MMK2T (= DSM 115063T = LMG 33049T).


Asunto(s)
Pantoea , Trifolium , Análisis de Secuencia de ADN , Pantoea/genética , Trifolium/genética , ARN Ribosómico 16S/genética , ADN , Filogenia , ADN Bacteriano/genética , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana , Hibridación de Ácido Nucleico
3.
BMC Genomics ; 25(1): 128, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297198

RESUMEN

BACKGROUND: The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS: In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION: These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.


Asunto(s)
Genoma de Planta , Trifolium , Trifolium/genética , Factores de Transcripción/genética , Plomo , Perfilación de la Expresión Génica
4.
Artículo en Inglés | MEDLINE | ID: mdl-38284408

RESUMEN

Three yeast isolates, NBRC 115909T, NBRC 115910 and NBRC 116270, were isolated from Trifolium pratense (red clover) flowers collected from Kisarazu, Chiba, Japan. Analysis of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) regions revealed that these isolates represent a single novel species within the genus Starmerella. Also, no ascospore formation was observed. The yeast isolates were closely related to Starmerella vitae UWOPS 00-107.2T and Starmerella bombi NRRL Y-17081T. They differed from S. vitae, the most closely related species with a validly published name, by ten nucleotide substitutions with two gaps in the D1/D2 domains and 20 nucleotide substitutions in the ITS region. Moreover, the three isolates exhibited distinct phenotypic characteristics from the closely related species. Therefore, we suggest that these three isolates represent a novel species, designated as Starmerella kisarazuensis f.a., sp. nov. The holotype is NBRC 115909T (isotype: CBS 18485T).


Asunto(s)
Saccharomycetales , Trifolium , Trifolium/genética , Filogenia , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN , Composición de Base , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Saccharomycetales/genética , Flores , Nucleótidos , ADN Espaciador Ribosómico/genética , Tailandia
5.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895037

RESUMEN

Caucasian clover (Trifolium ambiguum M. Bieb.) is an excellent perennial plant in the legume family Fabaceae, with a well-developed rhizome and strong clonal growth. Auxin is one of the most important phytohormones in plants and plays an important role in plant growth and development. Auxin response factor (ARF) can regulate the expression of auxin-responsive genes, thus participating in multiple pathways of auxin transduction signaling in a synergistic manner. No genomic database has been established for Caucasian clover. In this study, 71 TaARF genes were identified through a transcriptomic database of Caucasian clover rhizome development. Phylogenetic analysis grouped the TaARFs into six (1-6) clades. Thirty TaARFs contained a complete ARF structure, including three relatively conserved regions. Physical and chemical property analysis revealed that TaARFs are unstable and hydrophilic proteins. We also analyzed the expression pattern of TaARFs in different tissues (taproot, horizontal rhizome, swelling of taproot, rhizome bud and rhizome bud tip). Quantitative real-time RT-PCR revealed that all TaARFs were responsive to phytohormones (indole-3-acetic acid, gibberellic acid, abscisic acid and methyl jasmonate) in roots, stems and leaves. These results helped elucidate the role of ARFs in responses to different hormone treatments in Caucasian clover.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Trifolium , Reguladores del Crecimiento de las Plantas/farmacología , Transcriptoma , Filogenia , Trifolium/genética , Trifolium/metabolismo , Medicago/genética , Medicago/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Familia de Multigenes , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Hormonas , Regulación de la Expresión Génica de las Plantas
6.
Plant Physiol Biochem ; 203: 108050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37812991

RESUMEN

Caucasian clover (Trifolium ambiguum) is a perennial rooted and tillering leguminous forage with strong adaptability, outstanding stress tolerance and other preferable traits. However, the specificity with rhizobia limits the extended application of Caucasian clover. Therefore, it is important to study the changes of genes and metabolites in the early process of nodulation in Caucasian clover to improve its nodulation and nitrogen fixation ability. In this study, we used Caucasian clover as the experimental material to investigate its nodulation mechanism using transcriptomic and metabolomic approaches, such that to break the nitrogen fixation barrier for the promotion of Caucasian clover. Metabolomic and transcriptomic profiling revealed that both DAMs and DEGs were significantly enriched in the phenylpropanoid and flavonoid biosynthetic pathways, with DEGs showing up-regulation at 3 days and 6 days post inoculation (dpi) with rhizobia, and some DEGs showing down-regulation at 9 dpi. Accumulation of flavonoids was significantly increased at both 3 dpi and 6 dpi, and some compounds were significantly decreased at 9 dpi. A total of 35 DEGs were involved in flavonoid synthesis by WGCNA analysis, among which HCT, CCR, COMT and F3H played an important role. This study provides insights in understanding the molecular mechanism of nodulation and nitrogen fixation in Caucasian clover.


Asunto(s)
Rhizobium , Trifolium , Trifolium/genética , Flavonoides , Transcriptoma , Fenotipo , Fijación del Nitrógeno/genética
7.
Am J Bot ; 110(10): e16233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661820

RESUMEN

PREMISE: ß-Cyanoalanine synthase (ß-CAS) and alternative oxidase (AOX) play important roles in the ability of plants to detoxify and tolerate hydrogen cyanide (HCN). These functions are critical for all plants because HCN is produced at low levels during basic metabolic processes, and especially for cyanogenic species, which release high levels of HCN following tissue damage. However, expression of ß-CAS and Aox genes has not been examined in cyanogenic species, nor compared between cyanogenic and acyanogenic genotypes within a species. METHODS: We used a natural polymorphism for cyanogenesis in white clover to examine ß-CAS and Aox gene expression in relation to cyanogenesis-associated HCN exposure. We identified all ß-CAS and Aox gene copies present in the genome, including members of the Aox1, Aox2a, and Aox2d subfamilies previously reported in legumes. Expression levels were compared between cyanogenic and acyanogenic genotypes and between damaged and undamaged leaf tissue. RESULTS: ß-CAS and Aox2a expression was differentially elevated in cyanogenic genotypes, and tissue damage was not required to induce this increased expression. Aox2d, in contrast, appeared to be upregulated as a generalized wounding response. CONCLUSIONS: These findings suggest a heightened constitutive role for HCN detoxification (via elevated ß-CAS expression) and HCN-toxicity mitigation (via elevated Aox2a expression) in plants that are capable of cyanogenesis. As such, freezing-induced cyanide autotoxicity is unlikely to be the primary selective factor in the evolution of climate-associated cyanogenesis clines.


Asunto(s)
Cianuros , Trifolium , Trifolium/genética , Cianuro de Hidrógeno/metabolismo , Nitrilos
8.
PeerJ ; 11: e15927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692122

RESUMEN

Urban grasslands provide numerous ecosystem services, and their maintenance should be based on naturally regenerating plant populations. However, the urban environment is challenging for preserving viable populations, mostly because of their high fragmentation and small size, which can lead to genetic drift. We examined red clover (Trifolium pratense) in a medium-size city in Central Europe to test the cityscape effect on within- and among-population genetic diversity. We used eight inter-simple sequence repeat markers to examine the genetic structure of 16 populations, each represented by eight individuals. The isolation by resistance was analysed using a least cost patch approach, focusing on gene flow via pollinators. We found great variation among T. pratense populations, with no discernible geographic pattern in genetic diversity. We linked the diversity to the long history of the city and high stochasticity of land use changes that occurred with city development. In particular, we did not find that the Odra River (ca. 100 m wide) was a strong barrier to gene transfer. However, notable isolation was present due to resistance and distance, indicating that the populations are threatened by genetic drift. Therefore, gene movement between populations should be increased by appropriate management of urban green areas. We also found that small urban grassland (UG) patches with small populations can still hold rare alleles which significantly contribute to the overall genetic variation of T. pratense in the city.


Asunto(s)
Esencias Florales , Trifolium , Humanos , Ecosistema , Trifolium/genética , Alelos , Europa (Continente)
9.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542471

RESUMEN

White clover (Trifolium repens L.; Fabaceae) is an important forage and cover crop in agricultural pastures around the world and is increasingly used in evolutionary ecology and genetics to understand the genetic basis of adaptation. Historically, improvements in white clover breeding practices and assessments of genetic variation in nature have been hampered by a lack of high-quality genomic resources for this species, owing in part to its high heterozygosity and allotetraploid hybrid origin. Here, we use PacBio HiFi and chromosome conformation capture (Omni-C) technologies to generate a chromosome-level, haplotype-resolved genome assembly for white clover totaling 998 Mbp (scaffold N50 = 59.3 Mbp) and 1 Gbp (scaffold N50 = 58.6 Mbp) for haplotypes 1 and 2, respectively, with each haplotype arranged into 16 chromosomes (8 per subgenome). We additionally provide a functionally annotated haploid mapping assembly (968 Mbp, scaffold N50 = 59.9 Mbp), which drastically improves on the existing reference assembly in both contiguity and assembly accuracy. We annotated 78,174 protein-coding genes, resulting in protein BUSCO completeness scores of 99.6% and 99.3% against the embryophyta_odb10 and fabales_odb10 lineage datasets, respectively.


Asunto(s)
Trifolium , Trifolium/genética , Haplotipos , Fitomejoramiento , Medicago/genética , Cromosomas
10.
PeerJ ; 11: e15610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456899

RESUMEN

Background: White clover (Trifolium repens L) is a high-quality forage grass with a high protein content, but it is vulnerable to cold stress, which can negatively affect its growth and development. WRKY transcription factor is a family of plant transcription factors found mainly in higher plants and plays an important role in plant growth, development, and stress response. Although WRKY transcription factors have been studied extensively in other plants, it has been less studied in white clover. Methods and Results: In the present research, we have performed a genome-wide analysis of the WRKY gene family of white clover, in total, there were 145 members of WRKY transcription factors identified in white clover. The characterization of the TrWRKY genes was detailed, including conserved motif analysis, phylogenetic analysis, and gene duplication analysis, which have provided a better understanding of the structure and evolution of the TrWRKY genes in white clover. Meanwhile, the genetic regulation network (GRN) containing TrWRKY genes was reconstructed, and Gene Ontology (GO) annotation analysis of these function genes showed they contributed to regulation of transcription process, response to wounding, and phosphorylay signal transduction system, all of which were important processes in response to abiotic stress. To determine the TrWRKY genes function under cold stress, the RNA-seq dataset was analyzed; most of TrWRKY genes were highly upregulated in response to cold stress, particularly in the early stages of cold stress. These results were validated by qRT-PCR experiment, implying they are involved in various gene regulation pathways in response to cold stress. Conclusion: The results of this study provide insights that will be useful for further functional analyses of TrWRKY genes in response to biotic or abiotic stresses in white clover. These findings are likely to be useful for further research on the functions of TrWRKY genes and their role in response to cold stress, which is important to understand the molecular mechanism of cold tolerance in white clover and improve its cold tolerance.


Asunto(s)
Respuesta al Choque por Frío , Trifolium , Respuesta al Choque por Frío/genética , Filogenia , Trifolium/genética , Factores de Transcripción/genética , Medicago/metabolismo
11.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37511020

RESUMEN

White clover is a widely grown temperate legume forage with high nutritional value. Research on the functional genomics of white clover requires a stable and efficient transformation system. In this study, we successfully induced calluses from the cotyledons and leaves of 10 different white clover varieties. The results showed that the callus formation rate in the cotyledons did not vary significantly among the varieties, but the highest callus formation rate was observed in 'Koala' leaves. Subsequently, different concentrations of antioxidants and hormones were tested on the browning rate and differentiation ability of the calluses, respectively. The results showed that the browning rate was the lowest on MS supplemented with 20 mg L-1 AgNO3 and 25 mg L-1 VC, respectively, and the differentiation rate was highest on MS supplemented with 1 mg L-1 6-BA, 1 mg L-1 KT and 0.5 mg L-1 NAA. In addition, the transformation system for Agrobacterium tumefaciens-mediated transformation of 4-day-old leaves was optimized to some extent and obtained a positive callus rate of 8.9% using green fluorescent protein (GFP) as a marker gene. According to our data, by following this optimized protocol, the transformation efficiency could reach 2.38%. The results of this study will provide the foundation for regenerating multiple transgenic white clover from a single genetic background.


Asunto(s)
Trifolium , Trifolium/genética , Agrobacterium tumefaciens/genética , Genómica , Medicago
12.
BMC Genomics ; 24(1): 326, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312068

RESUMEN

BACKGROUND: White clover (Trifolium repens L.), an excellent perennial legume forage, is an allotetraploid native to southeastern Europe and southern Asia. It has high nutritional, ecological, genetic breeding, and medicinal values and exhibits excellent resistance to cold, drought, trample, and weed infestation. Thus, white clover is widely planted in Europe, America, and China; however, the lack of reference genome limits its breeding and cultivation. This study generated a white clover de novo genome assembly at the chromosomal level and annotated its components. RESULTS: The PacBio third-generation Hi-Fi assembly and sequencing methods generated a 1096 Mb genome size of T. repens, with contigs of N50 = 14 Mb, scaffolds of N50 = 65 Mb, and BUSCO value of 98.5%. The newly assembled genome has better continuity and integrity than the previously reported white clover reference genome; thus provides important resources for the molecular breeding and evolution of white clover and other forage. Additionally, we annotated 90,128 high-confidence gene models from the genome. White clover was closely related to Trifolium pratense and Trifolium medium but distantly related to Glycine max, Vigna radiata, Medicago truncatula, and Cicer arietinum. The expansion, contraction, and GO functional enrichment analysis of the gene families showed that T. repens gene families were associated with biological processes, molecular function, cellular components, and environmental resistance, which explained its excellent agronomic traits. CONCLUSIONS: This study reports a high-quality de novo assembly of white clover genome obtained at the chromosomal level using PacBio Hi-Fi sequencing, a third-generation sequencing. The generated high-quality genome assembly of white clover provides a key basis for accelerating the research and molecular breeding of this important forage crop. The genome is also valuable for future studies on legume forage biology, evolution, and genome-wide mapping of quantitative trait loci associated with the relevant agronomic traits.


Asunto(s)
Medicago truncatula , Trifolium , Trifolium/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Cromosomas
13.
Physiol Plant ; 175(4): e13953, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37318218

RESUMEN

The ability to tolerate low freezing temperatures is an important component of winter survival and persistence of red clover. Cold acclimation (CA) allows plants to acquire higher levels of freezing tolerance. However, the biochemical responses to cold and the importance of such changes for the plant to acquire adequate freezing tolerance have not been investigated in red clover of Nordic origin, which has a distinct genetic background. To shed light on this, we selected five freezing tolerant (FT) and five freezing susceptible (FS) accessions and studied the effect of CA on the contents of carbohydrates, amino acids, and phenolic compounds in the crowns. Among those compounds which increased during CA, FT accessions had higher contents of raffinose, pinitol, arginine, serine, alanine, valine, phenylalanine, and one phenolic compound (a pinocembrin hexoside derivative) than FS accessions, suggesting a role for these compounds in the freezing tolerance in the selected accessions. These findings, together with a description of the phenolic profile of red clover crowns, significantly add to the current knowledge of the biochemical changes during CA and their role in freezing tolerance in Nordic red clover.


Asunto(s)
Trifolium , Congelación , Trifolium/genética , Frío , Carbohidratos , Aclimatación/fisiología
14.
Mol Ecol ; 32(15): 4259-4277, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37248617

RESUMEN

While shaping of plant microbiome composition through 'host filtering' is well documented in legume-rhizobium symbioses, it is less clear to what extent different varieties and genotypes of the same plant species differentially influence symbiont community diversity and composition. Here, we compared how clover host varieties and genotypes affect the structure of Rhizobium populations in root nodules under conventional field and controlled greenhouse conditions. We first grew four Trifolium repens (white clover) F2 crosses and one variety in a conventional field trial and compared differences in root nodule Rhizobium leguminosarum symbiovar trifolii (Rlt) genotype diversity using high-throughput amplicon sequencing of chromosomal housekeeping (rpoB and recA) genes and auxiliary plasmid-borne symbiosis genes (nodA and nodD). We found that Rlt nodule diversities significantly differed between clover crosses, potentially due to host filtering. However, variance in Rlt diversity largely overlapped between crosses and was also explained by the spatial distribution of plants in the field, indicative of the role of local environmental conditions for nodule diversity. To test the effect of host filtering, we conducted a controlled greenhouse trial with a diverse Rlt inoculum and several host genotypes. We found that different clover varieties and genotypes of the same variety selected for significantly different Rlt nodule communities and that the strength of host filtering (deviation from the initial Rhizobium inoculant composition) was positively correlated with the efficiency of symbiosis (rate of plant greenness colouration). Together, our results suggest that selection by host genotype and local growth conditions jointly influence white clover Rlt nodule diversity and community composition.


Asunto(s)
Rhizobium leguminosarum , Rhizobium , Trifolium , Trifolium/genética , Medicago/genética , Rhizobium leguminosarum/genética , Simbiosis/genética , Plantas
15.
Genes (Basel) ; 14(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37107625

RESUMEN

Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.


Asunto(s)
Fabaceae , Trifolium , Trifolium/genética , Diploidia , Filogenia , Poliploidía
16.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012225

RESUMEN

AIMS: This study evaluated the red clover (Trifolium pratense) root-associated microbiota to clarify the presence of pathogenic and beneficial microorganisms in 89 Swedish field sites. METHODS AND RESULTS: 16S rRNA and ITS amplicon sequencing analysis were performed on DNA extracted from the red clover root samples collected to determine the composition of the prokaryotic and eukaryotic root-associated microbe communities. Alpha and beta diversities were calculated and relative abundance of various microbial taxa and their co-occurrence were analyzed. Rhizobium was the most prevalent bacterial genus, followed by Sphingomonas, Mucilaginibacter, Flavobacterium, and the unclassified Chloroflexi group KD4-96. The Leptodontidium, Cladosporium, Clonostachys, and Tetracladium fungal genera known for endophytic, saprotrophic, and mycoparasitic lifestyles were also frequently observed in all samples. Sixty-two potential pathogenic fungi were identified with a bias toward grass pathogens and a higher abundance in samples from conventional farms. CONCLUSIONS: We showed that the microbial community was mainly shaped by geographic location and management procedures. Co-occurrence networks revealed that the Rhizobiumleguminosarum bv. trifolii was negatively associated with all fungal pathogenic taxa recognized in this study.


Asunto(s)
Microbiota , Trifolium , Trifolium/genética , Trifolium/microbiología , Granjas , Medicago/genética , Medicago/microbiología , ARN Ribosómico 16S/genética , Microbiota/genética
17.
Plant J ; 115(2): 369-385, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37009644

RESUMEN

Maintenance of stable mitochondrial respiratory chains could enhance adaptability to high temperature, but the potential mechanism was not elucidated clearly in plants. In this study, we identified and isolated a TrFQR1 gene encoding the flavodoxin-like quinone reductase 1 (TrFQR1) located in mitochondria of leguminous white clover (Trifolium repens). Phylogenetic analysis indicated that amino acid sequences of FQR1 in various plant species showed a high degree of similarities. Ectopic expression of TrFQR1 protected yeast (Saccharomyces cerevisiae) from heat damage and toxic levels of benzoquinone, phenanthraquinone and hydroquinone. Transgenic Arabidopsis thaliana and white clover overexpressing TrFQR1 exhibited significantly lower oxidative damage and better photosynthetic capacity and growth than wild-type in response to high-temperature stress, whereas AtFQR1-RNAi A. thaliana showed more severe oxidative damage and growth retardation under heat stress. TrFQR1-transgenic white clover also maintained better respiratory electron transport chain than wild-type plants, as manifested by significantly higher mitochondrial complex II and III activities, alternative oxidase activity, NAD(P)H content, and coenzyme Q10 content in response to heat stress. In addition, overexpression of TrFQR1 enhanced the accumulation of lipids including phosphatidylglycerol, monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and cardiolipin as important compositions of bilayers involved in dynamic membrane assembly in mitochondria or chloroplasts positively associated with heat tolerance. TrFQR1-transgenic white clover also exhibited higher lipids saturation level and phosphatidylcholine:phosphatidylethanolamine ratio, which could be beneficial to membrane stability and integrity during a prolonged period of heat stress. The current study proves that TrFQR1 is essential for heat tolerance associated with mitochondrial respiratory chain, cellular reactive oxygen species homeostasis, and lipids remodeling in plants. TrFQR1 could be selected as a key candidate marker gene to screen heat-tolerant genotypes or develop heat-tolerant crops via molecular-based breeding.


Asunto(s)
Arabidopsis , Trifolium , Trifolium/genética , Trifolium/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Diglicéridos/metabolismo , Filogenia , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
18.
J Environ Radioact ; 262: 107152, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933462

RESUMEN

A comprehensive study of the biological effects of chronic radiation exposure (8 µGy/h) in populations of white clover (Trifolium repens L.) from the Chernobyl exclusion zone was carried out. White clover is one of the most important pasture legumes, having many agricultural applications. Studies at two reference and three radioactively contaminated plots showed no stable morphological effects in white clover at this level of radiation exposure. Increased activities of catalase and peroxidases were found in some impacted plots. Auxin concentration was enhanced in the radioactively contaminated plots. Genes involved in the maintenance of water homeostasis and photosynthetic processes (TIP1 and CAB1) were upregulated at radioactively contaminated plots.


Asunto(s)
Accidente Nuclear de Chernóbil , Monitoreo de Radiación , Trifolium , Trifolium/genética , Peroxidasas , Medicago
19.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361560

RESUMEN

Heat shock transcription factors (HSF) are divided into classes A, B and C. Class A transcription factors are generally recognized as transcriptional activators, while functional characterization of class B and C heat shock transcription factors have not been fully developed in most plant species. We isolated and characterized a novel HSF transcription factor gene, TrHSFB2a (a class B HSF) gene, from the drought stress-sensitive forage crop species, white clover (Trifolium repens). TrHSFB2a was highly homologous to MtHSFB2b, CarHSFB2a, AtHSFB2b and AtHSFB2a. The expression of TrHSFB2a was strongly induced by drought (PEG6000 15% w/v), high temperature (35 °C) and salt stresses (200 mM L-1 NaCl) in white clover, while subcellular localization analysis showed that it is a nuclear protein. Overexpression of the white clover gene TrHSFB2a in Arabidopsis significantly reduced fresh and dry weight, relative water contents (RWC), maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS), while it promoted leaf senescence, relative electrical conductivity (REC) and the contents of malondialdehyde (MDA) compared to a wild type under drought, heat and salt stress conditions of Arabidopsis plants. The silencing of its native homolog (AtHSFB2a) by RNA interference in Arabidopsis thaliana showed opposite trends by significantly increasing fresh and dry weights, RWC, maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS) and reducing REC and MDA contents under drought, heat and salt stress conditions compared to wild type Arabidopsis plants. These phenotypic and physiological indicators suggested that the TrHSFB2a of white clover functions as a negative regulator of heat, salt and drought tolerance. The bioinformatics analysis showed that TrHSFB2a contained the core B3 repression domain (BRD) that has been reported as a repressor activator domain in other plant species that might repress the activation of the heat shock-inducible genes required in the stress tolerance process in plants. The present study explores one of the potential causes of drought and heat sensitivity in white clover that can be overcome to some extent by silencing the TrHSFB2a gene in white clover.


Asunto(s)
Arabidopsis , Trifolium , Sequías , Arabidopsis/metabolismo , Trifolium/genética , Trifolium/metabolismo , Factores de Transcripción del Choque Térmico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Estrés Salino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Medicago/metabolismo
20.
Genes (Basel) ; 13(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36292663

RESUMEN

Leaves are the primary and critical feed for herbivores. They directly determine the yield and quality of legume forage. <i>Trifolium repens</i> (<i>T. repens</i>) is an indispensable legume species, widely cultivated in temperate pastures due to its nutritional value and nitrogen fixation. Although the leaves of <i>T. repens</i> are typical trifoliate, they have unusual patterns to adapt to herbivore feeding. The number of leaflets in <i>T. repens</i> affects its production and utilization. The <i>KNOX</i> gene family encodes transcriptional regulators that are vital in regulating and developing leaves. Identification and characterization of <i>TrKNOX</i> gene family as an active regulator of leaf development in <i>T. repens</i> were studied. A total of 21 <i>TrKNOX</i> genes were identified from the T. repens genome database and classified into three subgroups (Class I, Class II, and Class M) based on phylogenetic analysis. Nineteen of the genes identified had four conserved domains, except for <i>KNOX5</i> and <i>KNOX9</i>, which belong to Class M. Varying expression levels of TrKNOX genes were observed at different developmental stages and complexities of leaves. <i>KNOX9</i> was observed to upregulate the leaf complexity of T. repens. Research on <i>TrKNOX</i> genes could be novel and further assist in exploring their functions and cultivating high-quality <i>T. repens</i> varieties.


Asunto(s)
Trifolium , Trifolium/genética , Trifolium/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Herbivoria , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...